Propiedades semánticas de \mathcal{T}

José de Jesús Lavalle Martínez http://aleteya.cs.buap.mx/~jlavalle/

> Benemérita Universidad Autónoma de Puebla Facultad de Ciencias de la Computación Licenciatura en Ciencias de la Computación Fundamentos de Lenguajes de Programación CCOS 255

Contenido

 $lue{1}$ Propiedades semánticas de $\mathcal T$

2 Ejercicios

Semántica operacional para ${\mathcal T}$ II

Definición 1

La **relación de evaluación en un paso** \rightarrow sobre los términos de $\mathcal T$ está definida mediante las siguientes reglas:

$$\begin{array}{c} \text{if false then } t_2 \text{ else } t_3 \rightarrow t_3 \\ \\ \frac{t_1 \rightarrow t'_1}{\text{succ } t_1 \rightarrow \text{succ } t'_1} \text{ E-Succ} \\ \\ \hline \text{pred (succ } \text{nv}_1) \rightarrow \text{nv}_1 \end{array}$$

$$\overline{\text{iszero } 0 \to \text{true}} \quad \text{E-IszeroZero}$$

$$\frac{t_1 \to t_1'}{\text{iszero } t_1 \to \text{iszero } t_1'} \ \text{E-IsZero}$$

Teorema 2 (La evaluación en un paso es determinista)

Si $t \to t'$ y $t \to t''$ entonces t' = t''.

Teorema 2 (La evaluación en un paso es determinista)

Si $t \to t'$ y $t \to t''$ entonces t' = t''.

Demostración: Sobre la estructura de t.

Teorema 2 (La evaluación en un paso es determinista)

Si $t \to t'$ y $t \to t''$ entonces t' = t''.

Demostración: Sobre la estructura de t.

• $t = if t_1 then t_2 else t_3$.

Teorema 2 (La evaluación en un paso es determinista)

Si $t \to t'$ y $t \to t''$ entonces t' = t''.

Demostración: Sobre la estructura de t.

- $t = if t_1 then t_2 else t_3$.
 - Si $t_1=\mathrm{true}$ evaluando a t obtenemos $t\overset{E-\mathrm{IrTRUE}}{\to} t_2$. Note que no se puede aplicar $E\mathrm{-IrFALSE}$ ya que $t_1\neq \mathrm{false}$, tampoco podemos aplicar $E\mathrm{-IF}$ ya que esta regla tiene como premisa evaluar a t_1 , pero no existe alguna regla de evaluación en un paso para true , así evaluando nuevamente a t obtenemos $t\overset{E\mathrm{-IrTRUE}}{\to} t_2$, claramente $t_2=t_2$.

Teorema 2 (La evaluación en un paso es determinista)

Si $t \to t'$ y $t \to t''$ entonces t' = t''.

Demostración: Sobre la estructura de t.

• $t = if t_1 then t_2 else t_3$.

• Si $t_1 = \mathrm{false}$ evaluando a t obtenemos $t \overset{E-\mathrm{IFFALSE}}{\to} t_3$. Note que no se puede aplicar $E-\mathrm{IFTRUE}$ ya que $t_1 \neq \mathrm{true}$, tampoco podemos aplicar $E-\mathrm{IF}$ ya que esta regla tiene como premisa evaluar a t_1 , pero no existe alguna regla de evaluación en un paso para false, así evaluando nuevamente a t obtenemos $t \overset{E-\mathrm{IFFALSE}}{\to} t_3$, claramente $t_3 = t_3$.

- $t = if t_1 then t_2 else t_3$.
 - Si $t_1 \neq true$ y $t_1 \neq false$ entonces evaluando a t obtenemos $t \stackrel{E-IF}{\to} if \ t'_1 \ then \ t_2 \ else \ t_3$ al aplicar la regla $\frac{t_1 \to t'_1}{if \ t_1 \ then \ t_2 \ else \ t_3 \to if \ t'_1 \ then \ t_2 \ else \ t_3} \stackrel{E-IF}{\to}.$ Si volvemos a evaluar a t obtenemos $t \stackrel{E-IF}{\to} if \ t''_1 \ then \ t_2 \ else \ t_3$ por la misma regla E-IF, aplicando la hipótesis de inducción a $t_1 \to t'_1 \ y \ t_1 \to t''_1$ tenemos que $t'_1 = t''_1$. Por lo tanto tenemos que:

if t'_1 then t_2 else $t_3 = if t''_1$ then t_2 else t_3 .

• $t = succ\ t_1$ entonces evaluando a t obtenemos $t \stackrel{E-SUCC}{\to} succ\ t_1'$ al aplicar la regla $\frac{t_1 \to t_1'}{succ\ t_1 \to succ\ t_1'}$ E-SUCC. Si volvemos a evaluar a t obtenemos $t \stackrel{E-SUCC}{\to} succ\ t_1''$ por la misma regla E-SUCC, aplicando la hipótesis de inducción a $t_1 \to t_1'$ y $t_1 \to t_1''$ tenemos que $t_1' = t_1''$. Por lo tanto tenemos que:

$$succ t' = succ t''$$
.

- $t = pred t_1$.
 - Si $t_1=0$ evaluando a t obtenemos $t\overset{E-P_{RED}Z_{ERO}}{\to} 0$. Note que no se puede aplicar $E-P_{RED}S_{UCC}$ ya que $t_1 \neq (succ\ nv_1)$, tampoco podemos aplicar $E-P_{RED}$ ya que esta regla tiene como premisa evaluar a t_1 , pero no existe alguna regla de evaluación en un paso para 0, así evaluando nuevamente a t obtenemos $t\overset{E-P_{RED}Z_{ERO}}{\to} 0$. claramente 0=0.

• $t = pred t_1$.

• Si $t_1 = (\operatorname{succ}\ \operatorname{nv}_1)$ evaluando a t obtenemos $t \overset{E-\operatorname{PREDSUCC}}{\to} \operatorname{nv}_1$. Note que no se puede aplicar $E-\operatorname{PREDZERO}$ ya que $t_1 \neq 0$, tampoco podemos aplicar $E-\operatorname{PRED}$ ya que esta regla tiene como premisa evaluar a t_1 , pero no existe alguna regla de evaluación en un paso para $(\operatorname{succ}\ \operatorname{nv}_1)$ (aquí es importante aclarar que existe la regla para $\operatorname{succ}\ t_1$, es decir el sucesor de un término, no del valor numérico nv_1), así evaluando nuevamente a t obtenemos $t \overset{E-\operatorname{PREDSUCC}}{\to} \operatorname{nv}_1$, claramente $\operatorname{nv}_1 = \operatorname{nv}_1$.

- $t = pred t_1$.
 - Si $t_1 \neq 0$ y $t_1 \neq (\operatorname{succ}\ \operatorname{nv}_1)$ entonces evaluando a t obtenemos $t \xrightarrow{E-\operatorname{PRED}} \operatorname{pred}\ t'_1 \text{ al aplicar la regla} \ \frac{t_1 \to t'_1}{\operatorname{pred}\ t_1 \to \operatorname{pred}\ t'_1} \xrightarrow{E-\operatorname{PRED}}.$ Si volvemos a evaluar a t obtenemos $t \xrightarrow{E-\operatorname{PRED}} \operatorname{pred}\ t''_1$ por la misma regla $E-\operatorname{PRED}$, aplicando la hipótesis de inducción a $t_1 \to t'_1$ y $t_1 \to t''_1$ tenemos que $t'_1 = t''_1$. Por lo tanto tenemos que:

 $\mathrm{pred}\ t'=\mathrm{pred}\ t''.$

- $t = iszero t_1$.
 - Si $t_1=0$ evaluando a t obtenemos $t \overset{E-ISZEROZERO}{\to}$ true. Note que no se puede aplicar E-ISZEROSUCC ya que $t_1 \neq (succ\ nv_1)$, tampoco podemos aplicar E-ISZERO ya que esta regla tiene como premisa evaluar a t_1 , pero no existe alguna regla de evaluación en un paso para 0, así evaluando nuevamente a t obtenemos $t \overset{E-ISZEROZERO}{\to}$ true, claramente true = true.

• $t = iszero t_1$.

• Si $t_1 = (\operatorname{succ}\ \operatorname{nv}_1)$ evaluando a t obtenemos $t \stackrel{E-\operatorname{ISZEROSUCC}}{\to}$ false. Note que no se puede aplicar $E-\operatorname{ISZEROZERO}$ ya que $t_1 \neq 0$, tampoco podemos aplicar $E-\operatorname{ISZERO}$ ya que esta regla tiene como premisa evaluar a t_1 , pero no existe alguna regla de evaluación en un paso para $(\operatorname{succ}\ \operatorname{nv}_1)$ (aquí es importante aclarar que existe la regla para $\operatorname{succ}\ t_1$, es decir el sucesor de un término, no del valor numérico nv_1), así evaluando nuevamente a t obtenemos $t \stackrel{E-\operatorname{ISZEROSUCC}}{\to}$ false, claramente false = false.

- $t = iszero t_1$.
 - Si $t_1 \neq 0$ y $t_1 \neq (\operatorname{succ\ nv}_1)$ entonces evaluando a t obtenemos $t \xrightarrow{E-\operatorname{IsZERO}} \operatorname{iszero\ } t_1' = t \xrightarrow{\operatorname{iszero\ } t_1'} \xrightarrow{E-\operatorname{IsZERO}} E-\operatorname{IsZERO}.$ Si volvemos a evaluar a t obtenemos $t \xrightarrow{E-\operatorname{IsZERO}} \operatorname{iszero\ } t_1''$ por la misma regla $E-\operatorname{IsZERO}$, aplicando la hipótesis de inducción a $t_1 \to t_1'$ y $t_1 \to t_1''$ tenemos que $t_1' = t_1''$. Por lo tanto tenemos que:

iszero t' = iszero t''.

Valores

Definición 3

Los **valores** del lenguaje ${\mathcal T}$ están dados por la siguiente gramática:

$$v ::= true|false|nv$$

$$nv := 0 | succ nv$$

Forma normal

Definición 4

Un término t está en **forma normal** si ninguna regla de evaluación se puede aplicar a él, es decir, si no existe t' tal que $t \to t'$. También decimos que "t es una forma normal" como abreviatura de "t es un término en forma normal".

Teorema 5

Todo valor v está en forma normal.

Demostración: Por casos de acuerdo a la forma de v, siguiendo la Definición 3.

ullet $v={
m true}.$ Como se puede observar en la Definición 1 no existe ninguna regla de evaluación cuyo lado izquierdo empate con ${
m true}$, por lo tanto ${
m true}$ está en forma normal.

Teorema 5

Todo valor v está en forma normal.

Demostración: Por casos de acuerdo a la forma de v, siguiendo la Definición 3.

 $\ \, v = {
m false}.$ Como se puede observar en la Definición 1 no existe ninguna regla de evaluación cuyo lado izquierdo empate con false, por lo tanto false está en forma normal.

Teorema 5

Todo valor v está en forma normal.

Demostración: Por casos de acuerdo a la forma de v, siguiendo la Definición 3.

• v=0. Como se puede observar en la Definición 1 no existe ninguna regla de evaluación cuyo lado izquierdo empate con 0, por lo tanto 0 está en forma normal.

Teorema 5

Todo valor v está en forma normal.

Demostración: Por casos de acuerdo a la forma de v, siguiendo la Definición 3.

• v = succ nv. Como se puede observar en la Definición 1 SÍ existe una regla cuyo lado izquierdo empata con succ nv, por lo tanto succ nv NO está en forma normal.

Teorema 5

Todo valor v está en forma normal.

Demostración: Por casos de acuerdo a la forma de v, siguiendo la Definición 3.

- v = true. Como se puede observar en la Definición 1 no existe ninguna regla de evaluación cuyo lado izquierdo empate con true, por lo tanto true está en forma normal.
- v = false. Como se puede observar en la Definición 1 no existe ninguna regla de evaluación cuyo lado izquierdo empate con false, por lo tanto false está en forma normal.
- v=0. Como se puede observar en la Definición 1 no existe ninguna regla de evaluación cuyo lado izquierdo empate con 0, por lo tanto 0 está en forma normal.
- v = succ nv. Como se puede observar en la Definición 1 SÍ existe una regla cuyo lado izquierdo empata con succ nv, por lo tanto succ nv NO está en forma normal.

Toda forma normal es un valor I

Teorema 6

Si t está en forma normal entonces t es un valor.

Toda forma normal es un valor l

Teorema 6

Si t está en forma normal entonces t es un valor.

Demostración: Usaremos la contrapositiva para hacer la demostración, es decir, demostraremos que si t no es un valor entonces t no está en forma normal.

Toda forma normal es un valor l

Teorema 6

Si t está en forma normal entonces t es un valor.

Demostración: Usaremos la contrapositiva para hacer la demostración, es decir, demostraremos que si t no es un valor entonces t no está en forma normal.

• Si $t=if\ t_1$ then t_2 else t_3 entonces se pueden aplicar alguna de las reglas de evaluación E-IFTRUE, E-IFFALSE o E-IF, por lo tanto t no está en forma normal.

Toda forma normal es un valor l

Teorema 6

Si t está en forma normal entonces t es un valor.

Demostración: Usaremos la contrapositiva para hacer la demostración, es decir, demostraremos que si t no es un valor entonces t no está en forma normal.

• Si $t = \operatorname{pred} t_1$ entonces se pueden aplicar alguna de las reglas de evaluación E-PREDZERO, $E\text{-}PREDSUCC}$ o E-PRED, por lo tanto t no está en forma normal.

Toda forma normal es un valor II

• Si $t = iszero \ t_1$ entonces se pueden aplicar alguna de las reglas de evaluación E-IszeroZero, E-IszeroSucc o E-IsZero, por lo tanto t no está en forma normal.

Toda forma normal es un valor II

• Si $t = \operatorname{succ} t_1$ podemos aplicar la regla E-Succ y por lo tanto concluiríamos que t no está en forma normal. Note que aquí tenemos ambigüedad ya que de acuerdo con la Definición 3 succ nv es un valor el cual es un caso especial de succ t_1 . Es decir, un valor númerico nv o es 0 o es la composición de un número arbitrario de succs aplicados a 0. Mientras que succ t_1 es la aplicación de succ a cualquier término en \mathcal{T} .

Semántica operacional para ${\mathcal T}$

Definición 7

La relación de **evaluación en múltiples pasos** \to^* es la cerradura reflexiva y transitiva de la relación de evaluación en un paso. Es decir es la relación más pequeña que cumple las siguientes reglas.

$$\begin{array}{c} \overline{t\rightarrow^*t}\\ \underline{t\rightarrow t'}\\ t\rightarrow^*t'\\ \underline{t\rightarrow t''\quad t''\rightarrow^*t'}\\ t\rightarrow^*t' \end{array}$$

Determinismo de formas normales I

Teorema 8

Sean u y u' formas normales, si $t\to^* u$ y $t\to^* u'$ entonces u=u'.

Demostración: Por inducción sobre la definición de evaluación en múltiples pasos (Definición 7).

• $\overline{t} \to^* t$, tenemos que $t \to^* u$, lo cual significa que u se derivó en cero pasos, por lo tanto t=u. Si volvemos a evaluar tenemos que $t \to^* u'$, así necesariamente t=u', pero t=u, por lo tanto u=u'.

Determinismo de formas normales I

Teorema 8

Sean u y u' formas normales, si $t\to^* u$ y $t\to^* u'$ entonces u=u'.

Demostración: Por inducción sobre la definición de evaluación en múltiples pasos (Definición 7).

$$\underline{t \to t'}$$

• $t \to^* t'$, tenemos que $t \to^* u$, lo cual significa que u se derivó en un paso. Si volvemos a evaluar tenemos que $t \to^* u'$, pero como la evaluación en un paso es determinista, entonces u = u'.

Determinismo de formas normales II

• $t \to t'' \quad t'' \to^* t'$, tenemos que $t \to^* u$, lo cual significa que u se derivó en dos pasos o más, pero eso es gracias a que $t \to t''$ y $t'' \to^* u$. Si volvemos a evaluar tenemos que $t \to^* u'$, pero eso es gracias a que $t \to t'''$ y $t''' \to^* u'$. Como la evaluación en un paso es determinista tenemos que t'' = t''', ahora aplicando la hipótesis de inducción a $t'' \to^* u$ y a $t''' \to^* u'$, concluimos que u = u'.

Terminación de evaluación I

Teorema 9 (Terminación de evaluación)

Para todo término t existe una forma normal t' tal que $t \to^* t'$.

Demostración: Por inducción sobre la estructura de t.

- t = true; por el Teorema 5 como true es un valor entonces está en forma normal, lo cual quiere decir que se aplicó la regla de evaluación en cero pasos $t \to^* t$.
- \bullet t = false:
- t = 0:

$$\underline{t \to t'' \quad t'' \to^* t'}$$

- $t=if\ t_1\ then\ t_2\ else\ t_3$; aplicando la regla $\cfrac{t\to t''\quad t''\to^*t'}{t\to^*t'}$ tenemos tres casos:
 - Si $t_1 = true$ entonces por la regla E-IFTRUE tenemos que if true then t_2 else $t_3 \to t_2$, pero por hipótesis de inducción $t_2 \to^* t'$, donde t' está en forma normal.

Terminación de evaluación II

- Si $t_1 = \text{false}$ entonces por la regla E-IFFALSE tenemos que if false then t_2 else $t_3 \to t_3$, pero por hipótesis de inducción $t_3 \to^* t'$, donde t' está en forma normal.
- Si $t_1 \neq true$ y if $t_1 \neq false$ entonces por la regla E-IF tenemos que if t_1 then t_2 else $t_3 \rightarrow if$ t_1' then t_2 else t_3 , dado que $t_1 \rightarrow t_1'$, ahora por hipótesis de inducción if t_1' then t_2 else $t_3 \rightarrow^* t_1'$, donde t_1' está en forma normal.
- $t = succ t_1$;
- $t = \text{pred } t_1$;
- $t = iszero t_1$;

Ejercicios

- Termine la demostración del Teorema 8.
- Proponga una sintaxis y una semántica para que las demostraciones de los Teoremas 2, 5, 6, 8 y 9 sean completamente correctas.